Eigenvalues under the Backward Ricci Flow on Locally Homogeneous Closed 3-manifolds
In this paper, we study the evolving behaviors of the first eigenvalue of the Laplace–Beltrami operator under the normalized backward Ricci flow, construct various quantities which are monotonic under the backward Ricci flow and get upper and lower bounds. We prove that in cases where the backward R...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2018-07, Vol.34 (7), p.1179-1194 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the evolving behaviors of the first eigenvalue of the Laplace–Beltrami operator under the normalized backward Ricci flow, construct various quantities which are monotonic under the backward Ricci flow and get upper and lower bounds. We prove that in cases where the backward Ricci flow converges to a sub-Riemannian geometry after a proper rescaling, the eigenvalue evolves toward zero. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-018-6448-8 |