Microstructure characterization in a sensitized Al-Mg-Mn-Zn alloy
Alloying elements, present in the aluminum solid solution or the precipitates, influence the corrosion resistance of A1-Mg-Mn-Zn alloys. In this study, sensi- tizing treatment was applied to an A1-Mg-Mn-Zn alloy to modify the precipitation at the grain boundaries or in the grains. Transmission elect...
Gespeichert in:
Veröffentlicht in: | Rare metals 2018-02, Vol.37 (2), p.129-135 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alloying elements, present in the aluminum solid solution or the precipitates, influence the corrosion resistance of A1-Mg-Mn-Zn alloys. In this study, sensi- tizing treatment was applied to an A1-Mg-Mn-Zn alloy to modify the precipitation at the grain boundaries or in the grains. Transmission electron microscopy (TEM) and scanning electron microscope (SEM) were used to characterize various second-phase particles and determine their orientation relationship with the A1 matrix. After sensitizing treatment, z-phase (Mg32(Al, Zn)49) is observed to precipitate along the grain boundaries in a coarser size, producing a discontinuous grain boundary precipitate structure. In addition, Mn-rich particles are found to form with various shapes, such as global, plate and rhombus. |
---|---|
ISSN: | 1001-0521 1867-7185 |
DOI: | 10.1007/s12598-015-0665-4 |