An extension of the Gegenbauer pseudospectral method for the time fractional Fokker‐Planck equation
The time fractional Fokker‐Planck equation has been used in many physical transport problems which take place under the influence of an external force field. In this paper we examine pseudospectral method based on Gegenbauer polynomials and Chebyshev spectral differentiation matrix to solve numerica...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2018-03, Vol.41 (4), p.1301-1315 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The time fractional Fokker‐Planck equation has been used in many physical transport problems which take place under the influence of an external force field. In this paper we examine pseudospectral method based on Gegenbauer polynomials and Chebyshev spectral differentiation matrix to solve numerically a class of initial‐boundary value problems of the time fractional Fokker‐Planck equation on a finite domain. The presented method reduces the main problem to a generalized Sylvester matrix equation, which can be solved by the global generalized minimal residual method. Some numerical experiments are considered to demonstrate the accuracy and the efficiency of the proposed computational procedure. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.4656 |