Spatial prediction of basal area and volume in Eucalyptus stands using Landsat TM data: an assessment of prediction methods

Background In fast-growing forests such as Eucalyptus plantations, the correct determination of stand productivity is essential to aid decision making processes and ensure the efficiency of the wood supply chain. In the past decade, advances in remote sensing and computational methods have yielded n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New Zealand journal of forestry science 2018-01, Vol.48 (1), p.1-17, Article 1
Hauptverfasser: dos Reis, Aliny Aparecida, Carvalho, Mônica Canaan, de Mello, José Marcio, Gomide, Lucas Rezende, Ferraz Filho, Antônio Carlos, Acerbi Junior, Fausto Weimar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background In fast-growing forests such as Eucalyptus plantations, the correct determination of stand productivity is essential to aid decision making processes and ensure the efficiency of the wood supply chain. In the past decade, advances in remote sensing and computational methods have yielded new tools, techniques, and technologies that have led to improvements in forest management and forest productivity assessments. Our aim was to estimate and map the basal area and volume of Eucalyptus stands through the integration of forest inventory, remote sensing, parametric, and nonparametric methods of spatial prediction. Methods This study was conducted in 20 5-year-old clonal stands (362 ha) of Eucalyptus urophylla S.T.Blake x Eucalyptus camaldulensis Dehnh. The stands are located in the northwest region of Minas Gerais state, Brazil. Basal area and volume data were obtained from forest inventory operations carried out in the field. Spectral data were collected from a Landsat 5 TM satellite image, composed of spectral bands and vegetation indices. Multiple linear regression (MLR), random forest (RF), support vector machine (SVM), and artificial neural network (ANN) methods were used for basal area and volume estimation. Using ordinary kriging, we spatialised the residuals generated by the spatial prediction methods for the correction of trends in the estimates and more detailing of the spatial behaviour of basal area and volume. Results The ND54 index was the spectral variable that had the best correlation values with basal area ( r  = − 0.91) and volume ( r  = − 0.52) and was also the variable that most contributed to basal area and volume estimates by the MLR and RF methods. The RF algorithm presented smaller basal area and volume errors when compared to other machine learning algorithms and MLR. The addition of residual kriging in spatial prediction methods did not necessarily result in relative improvements in the estimations of these methods. Conclusions Random forest was the best method of spatial prediction and mapping of basal area and volume in the study area. The combination of spatial prediction methods with residual kriging did not result in relative improvement of spatial prediction accuracy of basal area and volume in all methods assessed in this study, and there is not always a spatial dependency structure in the residuals of a spatial prediction method. The approaches used in this study provide a framework for integrating field and multispe
ISSN:1179-5395
0048-0134
1179-5395
DOI:10.1186/s40490-017-0108-0