Fischer Decomposition for Massless Fields of Spin 1 in Dimension 4

The massless field equations for lower integer and half-integer values of spin in Minkowski space are fundamental equations in mathematical physics. Their counterpart in Euclidean spacetime is a system of elliptic equations, which was already studied from the viewpoint of function theory in the fram...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2018-02, Vol.12 (2), p.439-456
Hauptverfasser: Brackx, F., De Schepper, H., Krump, L., Souček, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 456
container_issue 2
container_start_page 439
container_title Complex analysis and operator theory
container_volume 12
creator Brackx, F.
De Schepper, H.
Krump, L.
Souček, V.
description The massless field equations for lower integer and half-integer values of spin in Minkowski space are fundamental equations in mathematical physics. Their counterpart in Euclidean spacetime is a system of elliptic equations, which was already studied from the viewpoint of function theory in the framework of so-called Hodge systems for differential forms of various degrees. In dimension 4 it is possible to substitute spinor calculus for the usual tensor notation. In the present paper we concentrate on the case of the massless field equation for spin 1 in dimension 4, and we treat, in a spinor formalism, a fundamental concept of its function theory: the Fischer decomposition of polynomial spinor fields, for which we give simple and independent proofs.
doi_str_mv 10.1007/s11785-017-0697-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992702569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992702569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a5de0cb1a3587bcd48a0420b431a97db0d4bf33baded6faa76112bbc55e54133</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyWmAM-O7bjEVoKSEUMdLdsx4FUbRx8rQRvT6ogxMJyd8P3_yd9hFwCuwbG9A0C6EoWDHTBlNHF5xGZgFJQVFzx499blqfkDHHNmGLamAm5W7QY3mOm8xjStk_Y7trU0SZl-uwQNxGRLtq4qZGmhr72bUeBDmPebmOHB7Q8JyeN22C8-NlTslrcr2aPxfLl4Wl2uyyCkGZXOFlHFjw4ISvtQ11WjpWc-VKAM7r2rC59I4R3daxV45xWANz7IGWUJQgxJVdjbZ_Txz7izq7TPnfDRwvGcM24VGagYKRCTog5NrbP7dblLwvMHkzZ0ZQdTNmDKfs5ZPiYwYHt3mL-0_xv6BtBGGt8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992702569</pqid></control><display><type>article</type><title>Fischer Decomposition for Massless Fields of Spin 1 in Dimension 4</title><source>SpringerLink Journals - AutoHoldings</source><creator>Brackx, F. ; De Schepper, H. ; Krump, L. ; Souček, V.</creator><creatorcontrib>Brackx, F. ; De Schepper, H. ; Krump, L. ; Souček, V.</creatorcontrib><description>The massless field equations for lower integer and half-integer values of spin in Minkowski space are fundamental equations in mathematical physics. Their counterpart in Euclidean spacetime is a system of elliptic equations, which was already studied from the viewpoint of function theory in the framework of so-called Hodge systems for differential forms of various degrees. In dimension 4 it is possible to substitute spinor calculus for the usual tensor notation. In the present paper we concentrate on the case of the massless field equation for spin 1 in dimension 4, and we treat, in a spinor formalism, a fundamental concept of its function theory: the Fischer decomposition of polynomial spinor fields, for which we give simple and independent proofs.</description><identifier>ISSN: 1661-8254</identifier><identifier>EISSN: 1661-8262</identifier><identifier>DOI: 10.1007/s11785-017-0697-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Calculus ; Decomposition ; Euclidean geometry ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Minkowski space ; Operator Theory</subject><ispartof>Complex analysis and operator theory, 2018-02, Vol.12 (2), p.439-456</ispartof><rights>Springer International Publishing AG 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-a5de0cb1a3587bcd48a0420b431a97db0d4bf33baded6faa76112bbc55e54133</citedby><cites>FETCH-LOGICAL-c359t-a5de0cb1a3587bcd48a0420b431a97db0d4bf33baded6faa76112bbc55e54133</cites><orcidid>0000-0003-3708-4570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11785-017-0697-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11785-017-0697-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Brackx, F.</creatorcontrib><creatorcontrib>De Schepper, H.</creatorcontrib><creatorcontrib>Krump, L.</creatorcontrib><creatorcontrib>Souček, V.</creatorcontrib><title>Fischer Decomposition for Massless Fields of Spin 1 in Dimension 4</title><title>Complex analysis and operator theory</title><addtitle>Complex Anal. Oper. Theory</addtitle><description>The massless field equations for lower integer and half-integer values of spin in Minkowski space are fundamental equations in mathematical physics. Their counterpart in Euclidean spacetime is a system of elliptic equations, which was already studied from the viewpoint of function theory in the framework of so-called Hodge systems for differential forms of various degrees. In dimension 4 it is possible to substitute spinor calculus for the usual tensor notation. In the present paper we concentrate on the case of the massless field equation for spin 1 in dimension 4, and we treat, in a spinor formalism, a fundamental concept of its function theory: the Fischer decomposition of polynomial spinor fields, for which we give simple and independent proofs.</description><subject>Analysis</subject><subject>Calculus</subject><subject>Decomposition</subject><subject>Euclidean geometry</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Minkowski space</subject><subject>Operator Theory</subject><issn>1661-8254</issn><issn>1661-8262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqXwAGyWmAM-O7bjEVoKSEUMdLdsx4FUbRx8rQRvT6ogxMJyd8P3_yd9hFwCuwbG9A0C6EoWDHTBlNHF5xGZgFJQVFzx499blqfkDHHNmGLamAm5W7QY3mOm8xjStk_Y7trU0SZl-uwQNxGRLtq4qZGmhr72bUeBDmPebmOHB7Q8JyeN22C8-NlTslrcr2aPxfLl4Wl2uyyCkGZXOFlHFjw4ISvtQ11WjpWc-VKAM7r2rC59I4R3daxV45xWANz7IGWUJQgxJVdjbZ_Txz7izq7TPnfDRwvGcM24VGagYKRCTog5NrbP7dblLwvMHkzZ0ZQdTNmDKfs5ZPiYwYHt3mL-0_xv6BtBGGt8</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Brackx, F.</creator><creator>De Schepper, H.</creator><creator>Krump, L.</creator><creator>Souček, V.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3708-4570</orcidid></search><sort><creationdate>20180201</creationdate><title>Fischer Decomposition for Massless Fields of Spin 1 in Dimension 4</title><author>Brackx, F. ; De Schepper, H. ; Krump, L. ; Souček, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a5de0cb1a3587bcd48a0420b431a97db0d4bf33baded6faa76112bbc55e54133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Calculus</topic><topic>Decomposition</topic><topic>Euclidean geometry</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Minkowski space</topic><topic>Operator Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brackx, F.</creatorcontrib><creatorcontrib>De Schepper, H.</creatorcontrib><creatorcontrib>Krump, L.</creatorcontrib><creatorcontrib>Souček, V.</creatorcontrib><collection>CrossRef</collection><jtitle>Complex analysis and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brackx, F.</au><au>De Schepper, H.</au><au>Krump, L.</au><au>Souček, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fischer Decomposition for Massless Fields of Spin 1 in Dimension 4</atitle><jtitle>Complex analysis and operator theory</jtitle><stitle>Complex Anal. Oper. Theory</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>12</volume><issue>2</issue><spage>439</spage><epage>456</epage><pages>439-456</pages><issn>1661-8254</issn><eissn>1661-8262</eissn><abstract>The massless field equations for lower integer and half-integer values of spin in Minkowski space are fundamental equations in mathematical physics. Their counterpart in Euclidean spacetime is a system of elliptic equations, which was already studied from the viewpoint of function theory in the framework of so-called Hodge systems for differential forms of various degrees. In dimension 4 it is possible to substitute spinor calculus for the usual tensor notation. In the present paper we concentrate on the case of the massless field equation for spin 1 in dimension 4, and we treat, in a spinor formalism, a fundamental concept of its function theory: the Fischer decomposition of polynomial spinor fields, for which we give simple and independent proofs.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11785-017-0697-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3708-4570</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1661-8254
ispartof Complex analysis and operator theory, 2018-02, Vol.12 (2), p.439-456
issn 1661-8254
1661-8262
language eng
recordid cdi_proquest_journals_1992702569
source SpringerLink Journals - AutoHoldings
subjects Analysis
Calculus
Decomposition
Euclidean geometry
Mathematical analysis
Mathematics
Mathematics and Statistics
Minkowski space
Operator Theory
title Fischer Decomposition for Massless Fields of Spin 1 in Dimension 4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fischer%20Decomposition%20for%20Massless%20Fields%20of%20Spin%201%20in%20Dimension%204&rft.jtitle=Complex%20analysis%20and%20operator%20theory&rft.au=Brackx,%20F.&rft.date=2018-02-01&rft.volume=12&rft.issue=2&rft.spage=439&rft.epage=456&rft.pages=439-456&rft.issn=1661-8254&rft.eissn=1661-8262&rft_id=info:doi/10.1007/s11785-017-0697-x&rft_dat=%3Cproquest_cross%3E1992702569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992702569&rft_id=info:pmid/&rfr_iscdi=true