Fischer Decomposition for Massless Fields of Spin 1 in Dimension 4
The massless field equations for lower integer and half-integer values of spin in Minkowski space are fundamental equations in mathematical physics. Their counterpart in Euclidean spacetime is a system of elliptic equations, which was already studied from the viewpoint of function theory in the fram...
Gespeichert in:
Veröffentlicht in: | Complex analysis and operator theory 2018-02, Vol.12 (2), p.439-456 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The massless field equations for lower integer and half-integer values of spin in Minkowski space are fundamental equations in mathematical physics. Their counterpart in Euclidean spacetime is a system of elliptic equations, which was already studied from the viewpoint of function theory in the framework of so-called Hodge systems for differential forms of various degrees. In dimension 4 it is possible to substitute spinor calculus for the usual tensor notation. In the present paper we concentrate on the case of the massless field equation for spin 1 in dimension 4, and we treat, in a spinor formalism, a fundamental concept of its function theory: the Fischer decomposition of polynomial spinor fields, for which we give simple and independent proofs. |
---|---|
ISSN: | 1661-8254 1661-8262 |
DOI: | 10.1007/s11785-017-0697-x |