Kazhdan-Lusztig cells in some weighted Coxeter groups
Let(W,S) be a Coxeter group with S = I■J such that J consists of all universal elements of S and that I generates a finite parabolic subgroup W_I of W with w_0 the longest element of W_I. We describe all the left cells and two-sided cells of the weighted Coxeter group(W,S,L) that have non-empty inte...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2018-02, Vol.61 (2), p.325-352 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let(W,S) be a Coxeter group with S = I■J such that J consists of all universal elements of S and that I generates a finite parabolic subgroup W_I of W with w_0 the longest element of W_I. We describe all the left cells and two-sided cells of the weighted Coxeter group(W,S,L) that have non-empty intersection with W_J,where the weight function L of(W, S) is in one of the following cases:(i) max{L(s) | s ∈J} 〈 min{L(t)|t∈I};(ii) min{L(s)|s ∈J} ≥L(w_0);(iii) there exists some t ∈ I satisfying L(t) 〈 L(s) for any s ∈I-{t} and L takes a constant value L_J on J with L_J in some subintervals of [1, L(w_0)-1]. The results in the case(iii) are obtained under a certain assumption on(W, W_I). |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-017-9133-2 |