Bayesian Naïve Bayes classifiers to text classification

Text classification is the task of assigning predefined categories to natural language documents, and it can provide conceptual views of document collections. The Naïve Bayes (NB) classifier is a family of simple probabilistic classifiers based on a common assumption that all features are independen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of information science 2018-02, Vol.44 (1), p.48-59
1. Verfasser: Xu, Shuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Text classification is the task of assigning predefined categories to natural language documents, and it can provide conceptual views of document collections. The Naïve Bayes (NB) classifier is a family of simple probabilistic classifiers based on a common assumption that all features are independent of each other, given the category variable, and it is often used as the baseline in text classification. However, classical NB classifiers with multinomial, Bernoulli and Gaussian event models are not fully Bayesian. This study proposes three Bayesian counterparts, where it turns out that classical NB classifier with Bernoulli event model is equivalent to Bayesian counterpart. Finally, experimental results on 20 newsgroups and WebKB data sets show that the performance of Bayesian NB classifier with multinomial event model is similar to that of classical counterpart, but Bayesian NB classifier with Gaussian event model is obviously better than classical counterpart.
ISSN:0165-5515
1741-6485
DOI:10.1177/0165551516677946