D sets and IP rich sets in countable, cancellative abelian semigroups

We give combinatorial characterizations of IP rich sets (IP sets that remain IP upon removal of any set of zero upper Banach density) and D sets (members of idempotent ultrafilters, all of whose members have positive upper Banach density) in a general countable, cancellative abelian semigroup. We th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semigroup forum 2018-02, Vol.96 (1), p.49-68
Hauptverfasser: Campbell, James T., McCutcheon, Randall
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 49
container_title Semigroup forum
container_volume 96
creator Campbell, James T.
McCutcheon, Randall
description We give combinatorial characterizations of IP rich sets (IP sets that remain IP upon removal of any set of zero upper Banach density) and D sets (members of idempotent ultrafilters, all of whose members have positive upper Banach density) in a general countable, cancellative abelian semigroup. We then show that the family of IP rich sets strictly contains the family of D sets.
doi_str_mv 10.1007/s00233-017-9854-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1991362519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1991362519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-6da739109563f1a6e4471683d229528b976b111543b780e929a7f5133f5229d93</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Br0YzmSZpjrJ-LSzoQc8hbdO1Szddk1bw39tSD148DTM87zvwEHIJ_AY417eJc4HIOGhmcpkxc0QWkKFgAlAfkwXnqBkYEKfkLKUdH3eucEEe7mnyfaIuVHT9SmNTfsyHJtCyG0LvitZf09KF0ret65svT13h28aFkds329gNh3ROTmrXJn_xO5fk_fHhbfXMNi9P69XdhpVC5T1TldNogBupsAanfJZpUDlWQhgp8sJoVQCAzLDQOfdGGKdrCYi1HInK4JJczb2H2H0OPvV21w0xjC8tGAOohISJgpkqY5dS9LU9xGbv4rcFbidbdrZlR1t2smWnjJgzaWTD1sc_zf-GfgD-DmnC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1991362519</pqid></control><display><type>article</type><title>D sets and IP rich sets in countable, cancellative abelian semigroups</title><source>SpringerLink Journals - AutoHoldings</source><creator>Campbell, James T. ; McCutcheon, Randall</creator><creatorcontrib>Campbell, James T. ; McCutcheon, Randall</creatorcontrib><description>We give combinatorial characterizations of IP rich sets (IP sets that remain IP upon removal of any set of zero upper Banach density) and D sets (members of idempotent ultrafilters, all of whose members have positive upper Banach density) in a general countable, cancellative abelian semigroup. We then show that the family of IP rich sets strictly contains the family of D sets.</description><identifier>ISSN: 0037-1912</identifier><identifier>EISSN: 1432-2137</identifier><identifier>DOI: 10.1007/s00233-017-9854-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Combinatorial analysis ; Mathematics ; Mathematics and Statistics ; Research Article</subject><ispartof>Semigroup forum, 2018-02, Vol.96 (1), p.49-68</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-6da739109563f1a6e4471683d229528b976b111543b780e929a7f5133f5229d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00233-017-9854-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00233-017-9854-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Campbell, James T.</creatorcontrib><creatorcontrib>McCutcheon, Randall</creatorcontrib><title>D sets and IP rich sets in countable, cancellative abelian semigroups</title><title>Semigroup forum</title><addtitle>Semigroup Forum</addtitle><description>We give combinatorial characterizations of IP rich sets (IP sets that remain IP upon removal of any set of zero upper Banach density) and D sets (members of idempotent ultrafilters, all of whose members have positive upper Banach density) in a general countable, cancellative abelian semigroup. We then show that the family of IP rich sets strictly contains the family of D sets.</description><subject>Algebra</subject><subject>Combinatorial analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Research Article</subject><issn>0037-1912</issn><issn>1432-2137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Br0YzmSZpjrJ-LSzoQc8hbdO1Szddk1bw39tSD148DTM87zvwEHIJ_AY417eJc4HIOGhmcpkxc0QWkKFgAlAfkwXnqBkYEKfkLKUdH3eucEEe7mnyfaIuVHT9SmNTfsyHJtCyG0LvitZf09KF0ret65svT13h28aFkds329gNh3ROTmrXJn_xO5fk_fHhbfXMNi9P69XdhpVC5T1TldNogBupsAanfJZpUDlWQhgp8sJoVQCAzLDQOfdGGKdrCYi1HInK4JJczb2H2H0OPvV21w0xjC8tGAOohISJgpkqY5dS9LU9xGbv4rcFbidbdrZlR1t2smWnjJgzaWTD1sc_zf-GfgD-DmnC</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Campbell, James T.</creator><creator>McCutcheon, Randall</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180201</creationdate><title>D sets and IP rich sets in countable, cancellative abelian semigroups</title><author>Campbell, James T. ; McCutcheon, Randall</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-6da739109563f1a6e4471683d229528b976b111543b780e929a7f5133f5229d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Combinatorial analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campbell, James T.</creatorcontrib><creatorcontrib>McCutcheon, Randall</creatorcontrib><collection>CrossRef</collection><jtitle>Semigroup forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campbell, James T.</au><au>McCutcheon, Randall</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D sets and IP rich sets in countable, cancellative abelian semigroups</atitle><jtitle>Semigroup forum</jtitle><stitle>Semigroup Forum</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>96</volume><issue>1</issue><spage>49</spage><epage>68</epage><pages>49-68</pages><issn>0037-1912</issn><eissn>1432-2137</eissn><abstract>We give combinatorial characterizations of IP rich sets (IP sets that remain IP upon removal of any set of zero upper Banach density) and D sets (members of idempotent ultrafilters, all of whose members have positive upper Banach density) in a general countable, cancellative abelian semigroup. We then show that the family of IP rich sets strictly contains the family of D sets.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00233-017-9854-9</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-1912
ispartof Semigroup forum, 2018-02, Vol.96 (1), p.49-68
issn 0037-1912
1432-2137
language eng
recordid cdi_proquest_journals_1991362519
source SpringerLink Journals - AutoHoldings
subjects Algebra
Combinatorial analysis
Mathematics
Mathematics and Statistics
Research Article
title D sets and IP rich sets in countable, cancellative abelian semigroups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D%20sets%20and%20IP%20rich%20sets%20in%20countable,%20cancellative%20abelian%20semigroups&rft.jtitle=Semigroup%20forum&rft.au=Campbell,%20James%20T.&rft.date=2018-02-01&rft.volume=96&rft.issue=1&rft.spage=49&rft.epage=68&rft.pages=49-68&rft.issn=0037-1912&rft.eissn=1432-2137&rft_id=info:doi/10.1007/s00233-017-9854-9&rft_dat=%3Cproquest_cross%3E1991362519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1991362519&rft_id=info:pmid/&rfr_iscdi=true