D sets and IP rich sets in countable, cancellative abelian semigroups
We give combinatorial characterizations of IP rich sets (IP sets that remain IP upon removal of any set of zero upper Banach density) and D sets (members of idempotent ultrafilters, all of whose members have positive upper Banach density) in a general countable, cancellative abelian semigroup. We th...
Gespeichert in:
Veröffentlicht in: | Semigroup forum 2018-02, Vol.96 (1), p.49-68 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | Semigroup forum |
container_volume | 96 |
creator | Campbell, James T. McCutcheon, Randall |
description | We give combinatorial characterizations of IP rich sets (IP sets that remain IP upon removal of any set of zero upper Banach density) and D sets (members of idempotent ultrafilters, all of whose members have positive upper Banach density) in a general countable, cancellative abelian semigroup. We then show that the family of IP rich sets strictly contains the family of D sets. |
doi_str_mv | 10.1007/s00233-017-9854-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1991362519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1991362519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-6da739109563f1a6e4471683d229528b976b111543b780e929a7f5133f5229d93</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Br0YzmSZpjrJ-LSzoQc8hbdO1Szddk1bw39tSD148DTM87zvwEHIJ_AY417eJc4HIOGhmcpkxc0QWkKFgAlAfkwXnqBkYEKfkLKUdH3eucEEe7mnyfaIuVHT9SmNTfsyHJtCyG0LvitZf09KF0ret65svT13h28aFkds329gNh3ROTmrXJn_xO5fk_fHhbfXMNi9P69XdhpVC5T1TldNogBupsAanfJZpUDlWQhgp8sJoVQCAzLDQOfdGGKdrCYi1HInK4JJczb2H2H0OPvV21w0xjC8tGAOohISJgpkqY5dS9LU9xGbv4rcFbidbdrZlR1t2smWnjJgzaWTD1sc_zf-GfgD-DmnC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1991362519</pqid></control><display><type>article</type><title>D sets and IP rich sets in countable, cancellative abelian semigroups</title><source>SpringerLink Journals - AutoHoldings</source><creator>Campbell, James T. ; McCutcheon, Randall</creator><creatorcontrib>Campbell, James T. ; McCutcheon, Randall</creatorcontrib><description>We give combinatorial characterizations of IP rich sets (IP sets that remain IP upon removal of any set of zero upper Banach density) and D sets (members of idempotent ultrafilters, all of whose members have positive upper Banach density) in a general countable, cancellative abelian semigroup. We then show that the family of IP rich sets strictly contains the family of D sets.</description><identifier>ISSN: 0037-1912</identifier><identifier>EISSN: 1432-2137</identifier><identifier>DOI: 10.1007/s00233-017-9854-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Combinatorial analysis ; Mathematics ; Mathematics and Statistics ; Research Article</subject><ispartof>Semigroup forum, 2018-02, Vol.96 (1), p.49-68</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-6da739109563f1a6e4471683d229528b976b111543b780e929a7f5133f5229d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00233-017-9854-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00233-017-9854-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Campbell, James T.</creatorcontrib><creatorcontrib>McCutcheon, Randall</creatorcontrib><title>D sets and IP rich sets in countable, cancellative abelian semigroups</title><title>Semigroup forum</title><addtitle>Semigroup Forum</addtitle><description>We give combinatorial characterizations of IP rich sets (IP sets that remain IP upon removal of any set of zero upper Banach density) and D sets (members of idempotent ultrafilters, all of whose members have positive upper Banach density) in a general countable, cancellative abelian semigroup. We then show that the family of IP rich sets strictly contains the family of D sets.</description><subject>Algebra</subject><subject>Combinatorial analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Research Article</subject><issn>0037-1912</issn><issn>1432-2137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Br0YzmSZpjrJ-LSzoQc8hbdO1Szddk1bw39tSD148DTM87zvwEHIJ_AY417eJc4HIOGhmcpkxc0QWkKFgAlAfkwXnqBkYEKfkLKUdH3eucEEe7mnyfaIuVHT9SmNTfsyHJtCyG0LvitZf09KF0ret65svT13h28aFkds329gNh3ROTmrXJn_xO5fk_fHhbfXMNi9P69XdhpVC5T1TldNogBupsAanfJZpUDlWQhgp8sJoVQCAzLDQOfdGGKdrCYi1HInK4JJczb2H2H0OPvV21w0xjC8tGAOohISJgpkqY5dS9LU9xGbv4rcFbidbdrZlR1t2smWnjJgzaWTD1sc_zf-GfgD-DmnC</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Campbell, James T.</creator><creator>McCutcheon, Randall</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180201</creationdate><title>D sets and IP rich sets in countable, cancellative abelian semigroups</title><author>Campbell, James T. ; McCutcheon, Randall</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-6da739109563f1a6e4471683d229528b976b111543b780e929a7f5133f5229d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Combinatorial analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campbell, James T.</creatorcontrib><creatorcontrib>McCutcheon, Randall</creatorcontrib><collection>CrossRef</collection><jtitle>Semigroup forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campbell, James T.</au><au>McCutcheon, Randall</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D sets and IP rich sets in countable, cancellative abelian semigroups</atitle><jtitle>Semigroup forum</jtitle><stitle>Semigroup Forum</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>96</volume><issue>1</issue><spage>49</spage><epage>68</epage><pages>49-68</pages><issn>0037-1912</issn><eissn>1432-2137</eissn><abstract>We give combinatorial characterizations of IP rich sets (IP sets that remain IP upon removal of any set of zero upper Banach density) and D sets (members of idempotent ultrafilters, all of whose members have positive upper Banach density) in a general countable, cancellative abelian semigroup. We then show that the family of IP rich sets strictly contains the family of D sets.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00233-017-9854-9</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-1912 |
ispartof | Semigroup forum, 2018-02, Vol.96 (1), p.49-68 |
issn | 0037-1912 1432-2137 |
language | eng |
recordid | cdi_proquest_journals_1991362519 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Combinatorial analysis Mathematics Mathematics and Statistics Research Article |
title | D sets and IP rich sets in countable, cancellative abelian semigroups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D%20sets%20and%20IP%20rich%20sets%20in%20countable,%20cancellative%20abelian%20semigroups&rft.jtitle=Semigroup%20forum&rft.au=Campbell,%20James%20T.&rft.date=2018-02-01&rft.volume=96&rft.issue=1&rft.spage=49&rft.epage=68&rft.pages=49-68&rft.issn=0037-1912&rft.eissn=1432-2137&rft_id=info:doi/10.1007/s00233-017-9854-9&rft_dat=%3Cproquest_cross%3E1991362519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1991362519&rft_id=info:pmid/&rfr_iscdi=true |