D sets and IP rich sets in countable, cancellative abelian semigroups
We give combinatorial characterizations of IP rich sets (IP sets that remain IP upon removal of any set of zero upper Banach density) and D sets (members of idempotent ultrafilters, all of whose members have positive upper Banach density) in a general countable, cancellative abelian semigroup. We th...
Gespeichert in:
Veröffentlicht in: | Semigroup forum 2018-02, Vol.96 (1), p.49-68 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give combinatorial characterizations of IP rich sets (IP sets that remain IP upon removal of any set of zero upper Banach density) and D sets (members of idempotent ultrafilters, all of whose members have positive upper Banach density) in a general countable, cancellative abelian semigroup. We then show that the family of IP rich sets strictly contains the family of D sets. |
---|---|
ISSN: | 0037-1912 1432-2137 |
DOI: | 10.1007/s00233-017-9854-9 |