Cytoprotective Effect of Heat Shock Protein 27 Against Lipopolysaccharide-Induced Apoptosis of Renal Epithelial HK-2 Cells

Background: In response to various stimuli, heat shock protein 27 (Hsp27) functions as an anti-apoptotic or/and anti-inflammatory factor which confers a survival advantage to cells. This study was aimed to explore whether Hsp27 also has a cytoprotective role in human renal tubular epithelial cells,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular physiology and biochemistry 2017-01, Vol.41 (6), p.2211-2220
Hauptverfasser: Li, Chunmei, Wu, Jiang, Li, Yuan, Xing, Guangqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: In response to various stimuli, heat shock protein 27 (Hsp27) functions as an anti-apoptotic or/and anti-inflammatory factor which confers a survival advantage to cells. This study was aimed to explore whether Hsp27 also has a cytoprotective role in human renal tubular epithelial cells, and to evaluate its potential in treating septic acute kidney injury (septic AKI). Methods: HK-2 cells were subjected to different concentrations (0-10 µg/mL) of lipopolysaccharide (LPS) for various times (0-24 h) to establish a septic AKI model in vitro. Before LPS administration, HK-2 cells were transfected either with vectors or siRNA against Hsp27, and the changes in cell viability and apoptotic cells rate were assessed using CCK-8 and flow cytometry. The expression changes in apoptosis-related proteins, proinflammatory cytokines and chemokine, as well as main factors in NF-κB and JNK pathways were mainly determined by Western blotting. Besides, the relationship between Hsp27 and Bcl-2 was detected by co-immunoprecipitation. Results: LPS remarkably damaged HK-2 cells by reduction of cell viability, induction of apoptosis, and stimulation of proinflammatory cytokines and chemokine release. Hsp27 overexpression significantly impaired LPS-induced damage in HK-2 cells. Hsp27 overexpression couldn’t alter the mRNA level of Bcl-2, but could interact with Bcl-2 at an endogenous level. Both NF-κB and JNK pathways were activated by LPS, while were blocked in Hsp27-overexpressing cells. Conclusion: Hsp27 overexpression conferred a survival advantage to LPS-injured HK-2 cells by controlling cell viability, apoptosis and inflammation, possibly via interaction with Bcl-2 and modulation of NF-κB and JNK pathways.
ISSN:1015-8987
1421-9778
DOI:10.1159/000475636