Preconditioned ADMM for a Class of Bilinear Programming Problems
We design a novel preconditioned alternating direction method for solving a class of bilinear programming problems, where each subproblem is solved by adding a positive-definite regularization term with a proximal parameter. By the aid of the variational inequality, the global convergence of the pro...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2018 |
creator | Liang, Xiaobo Bai, Jianchao |
description | We design a novel preconditioned alternating direction method for solving a class of bilinear programming problems, where each subproblem is solved by adding a positive-definite regularization term with a proximal parameter. By the aid of the variational inequality, the global convergence of the proposed method is analyzed and a worst-case O(1/t) convergence rate in an ergodic sense is established. Several preliminary numerical examples, including the Markowitz portfolio optimization problem, are also tested to verify the performance of the proposed method. |
doi_str_mv | 10.1155/2018/5694201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1989529627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989529627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-94f4e58e36216b6382d5e0452bafef5490aaf888f3e27fdc89c50b13c9deebb33</originalsourceid><addsrcrecordid>eNqF0EtLAzEUBeAgCtbqzrUEXOrYPCZpsrPWJ7TYhYK7kJm5qSkzk5q0iP_eKVNw6eqexce5cBA6p-SGUiFGjFA1ElLnXThAAyokzwTNx4ddJizPKOMfx-gkpRUhjAqqBuh2EaEMbeU3PrRQ4cn9fI5diNjiaW1TwsHhO1_7FmzEixiW0TaNb5e7XNTQpFN05Gyd4Gx_h-j98eFt-pzNXp9eppNZVnJJNpnOXQ5CAZeMykJyxSoBJBessA6cyDWx1imlHAc2dlWpdClIQXmpK4Ci4HyILvvedQxfW0gbswrb2HYvDdVKC6YlG3fquldlDClFcGYdfWPjj6HE7DYyu43MfqOOX_X807eV_fb_6YteQ2fA2T_NiCKM8V8dSG7T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989529627</pqid></control><display><type>article</type><title>Preconditioned ADMM for a Class of Bilinear Programming Problems</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Liang, Xiaobo ; Bai, Jianchao</creator><contributor>Ravindran, S. S.</contributor><creatorcontrib>Liang, Xiaobo ; Bai, Jianchao ; Ravindran, S. S.</creatorcontrib><description>We design a novel preconditioned alternating direction method for solving a class of bilinear programming problems, where each subproblem is solved by adding a positive-definite regularization term with a proximal parameter. By the aid of the variational inequality, the global convergence of the proposed method is analyzed and a worst-case O(1/t) convergence rate in an ergodic sense is established. Several preliminary numerical examples, including the Markowitz portfolio optimization problem, are also tested to verify the performance of the proposed method.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/5694201</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Applied mathematics ; Computational mathematics ; Convergence ; Linear programming ; Mathematical problems ; Mathematical programming ; Methods ; Regularization</subject><ispartof>Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-9</ispartof><rights>Copyright © 2018 Xiaobo Liang and Jianchao Bai.</rights><rights>Copyright © 2018 Xiaobo Liang and Jianchao Bai.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-94f4e58e36216b6382d5e0452bafef5490aaf888f3e27fdc89c50b13c9deebb33</citedby><cites>FETCH-LOGICAL-c360t-94f4e58e36216b6382d5e0452bafef5490aaf888f3e27fdc89c50b13c9deebb33</cites><orcidid>0000-0002-2394-8852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Ravindran, S. S.</contributor><creatorcontrib>Liang, Xiaobo</creatorcontrib><creatorcontrib>Bai, Jianchao</creatorcontrib><title>Preconditioned ADMM for a Class of Bilinear Programming Problems</title><title>Mathematical problems in engineering</title><description>We design a novel preconditioned alternating direction method for solving a class of bilinear programming problems, where each subproblem is solved by adding a positive-definite regularization term with a proximal parameter. By the aid of the variational inequality, the global convergence of the proposed method is analyzed and a worst-case O(1/t) convergence rate in an ergodic sense is established. Several preliminary numerical examples, including the Markowitz portfolio optimization problem, are also tested to verify the performance of the proposed method.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Computational mathematics</subject><subject>Convergence</subject><subject>Linear programming</subject><subject>Mathematical problems</subject><subject>Mathematical programming</subject><subject>Methods</subject><subject>Regularization</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0EtLAzEUBeAgCtbqzrUEXOrYPCZpsrPWJ7TYhYK7kJm5qSkzk5q0iP_eKVNw6eqexce5cBA6p-SGUiFGjFA1ElLnXThAAyokzwTNx4ddJizPKOMfx-gkpRUhjAqqBuh2EaEMbeU3PrRQ4cn9fI5diNjiaW1TwsHhO1_7FmzEixiW0TaNb5e7XNTQpFN05Gyd4Gx_h-j98eFt-pzNXp9eppNZVnJJNpnOXQ5CAZeMykJyxSoBJBessA6cyDWx1imlHAc2dlWpdClIQXmpK4Ci4HyILvvedQxfW0gbswrb2HYvDdVKC6YlG3fquldlDClFcGYdfWPjj6HE7DYyu43MfqOOX_X807eV_fb_6YteQ2fA2T_NiCKM8V8dSG7T</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Liang, Xiaobo</creator><creator>Bai, Jianchao</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-2394-8852</orcidid></search><sort><creationdate>20180101</creationdate><title>Preconditioned ADMM for a Class of Bilinear Programming Problems</title><author>Liang, Xiaobo ; Bai, Jianchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-94f4e58e36216b6382d5e0452bafef5490aaf888f3e27fdc89c50b13c9deebb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Computational mathematics</topic><topic>Convergence</topic><topic>Linear programming</topic><topic>Mathematical problems</topic><topic>Mathematical programming</topic><topic>Methods</topic><topic>Regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xiaobo</creatorcontrib><creatorcontrib>Bai, Jianchao</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xiaobo</au><au>Bai, Jianchao</au><au>Ravindran, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preconditioned ADMM for a Class of Bilinear Programming Problems</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>We design a novel preconditioned alternating direction method for solving a class of bilinear programming problems, where each subproblem is solved by adding a positive-definite regularization term with a proximal parameter. By the aid of the variational inequality, the global convergence of the proposed method is analyzed and a worst-case O(1/t) convergence rate in an ergodic sense is established. Several preliminary numerical examples, including the Markowitz portfolio optimization problem, are also tested to verify the performance of the proposed method.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/5694201</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2394-8852</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-9 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_1989529627 |
source | EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Algorithms Applied mathematics Computational mathematics Convergence Linear programming Mathematical problems Mathematical programming Methods Regularization |
title | Preconditioned ADMM for a Class of Bilinear Programming Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preconditioned%20ADMM%20for%20a%20Class%20of%20Bilinear%20Programming%20Problems&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Liang,%20Xiaobo&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/5694201&rft_dat=%3Cproquest_cross%3E1989529627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989529627&rft_id=info:pmid/&rfr_iscdi=true |