Preconditioned ADMM for a Class of Bilinear Programming Problems

We design a novel preconditioned alternating direction method for solving a class of bilinear programming problems, where each subproblem is solved by adding a positive-definite regularization term with a proximal parameter. By the aid of the variational inequality, the global convergence of the pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-9
Hauptverfasser: Liang, Xiaobo, Bai, Jianchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We design a novel preconditioned alternating direction method for solving a class of bilinear programming problems, where each subproblem is solved by adding a positive-definite regularization term with a proximal parameter. By the aid of the variational inequality, the global convergence of the proposed method is analyzed and a worst-case O(1/t) convergence rate in an ergodic sense is established. Several preliminary numerical examples, including the Markowitz portfolio optimization problem, are also tested to verify the performance of the proposed method.
ISSN:1024-123X
1563-5147
DOI:10.1155/2018/5694201