Strong Equality Between the 2-Rainbow Domination and Independent 2-Rainbow Domination Numbers in Trees

A 2- rainbow dominating function (2RDF) on a graph G = ( V , E ) is a function f from the vertex set V to the set of all subsets of the set { 1 , 2 } such that for any vertex v ∈ V with f ( v ) = ∅ the condition ⋃ u ∈ N ( v ) f ( u ) = { 1 , 2 } is fulfilled. A 2RDF f is independent (I2RDF) if no tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2016-06, Vol.39 (Suppl 1), p.205-218
Hauptverfasser: Amjadi, J., Falahat, M., Sheikholeslami, S. M., Rad, N. Jafari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A 2- rainbow dominating function (2RDF) on a graph G = ( V , E ) is a function f from the vertex set V to the set of all subsets of the set { 1 , 2 } such that for any vertex v ∈ V with f ( v ) = ∅ the condition ⋃ u ∈ N ( v ) f ( u ) = { 1 , 2 } is fulfilled. A 2RDF f is independent (I2RDF) if no two vertices assigned nonempty sets are adjacent. The weight of a 2RDF f is the value ω ( f ) = ∑ v ∈ V | f ( v ) | . The 2- rainbow domination number γ r 2 ( G ) (respectively, the independent 2-rainbow domination number i r 2 ( G ) ) is the minimum weight of a 2RDF (respectively, I2RDF) on G . We say that γ r 2 ( G ) is strongly equal to i r 2 ( G ) and denote by γ r 2 ( G ) ≡ i r 2 ( G ) , if every 2RDF on G of minimum weight is an I2RDF. In this paper, we provide a constructive characterization of trees T with γ r 2 ( T ) ≡ i r 2 ( T ) .
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-015-0284-0