Strong Equality Between the 2-Rainbow Domination and Independent 2-Rainbow Domination Numbers in Trees
A 2- rainbow dominating function (2RDF) on a graph G = ( V , E ) is a function f from the vertex set V to the set of all subsets of the set { 1 , 2 } such that for any vertex v ∈ V with f ( v ) = ∅ the condition ⋃ u ∈ N ( v ) f ( u ) = { 1 , 2 } is fulfilled. A 2RDF f is independent (I2RDF) if no tw...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2016-06, Vol.39 (Suppl 1), p.205-218 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A 2-
rainbow dominating function
(2RDF) on a graph
G
=
(
V
,
E
)
is a function
f
from the vertex set
V
to the set of all subsets of the set
{
1
,
2
}
such that for any vertex
v
∈
V
with
f
(
v
)
=
∅
the condition
⋃
u
∈
N
(
v
)
f
(
u
)
=
{
1
,
2
}
is fulfilled. A 2RDF
f
is independent (I2RDF) if no two vertices assigned nonempty sets are adjacent. The
weight
of a 2RDF
f
is the value
ω
(
f
)
=
∑
v
∈
V
|
f
(
v
)
|
. The 2-
rainbow domination number
γ
r
2
(
G
)
(respectively, the
independent 2-rainbow domination number
i
r
2
(
G
)
) is the minimum weight of a 2RDF (respectively, I2RDF) on
G
. We say that
γ
r
2
(
G
)
is strongly equal to
i
r
2
(
G
)
and denote by
γ
r
2
(
G
)
≡
i
r
2
(
G
)
, if every 2RDF on
G
of minimum weight is an I2RDF. In this paper, we provide a constructive characterization of trees
T
with
γ
r
2
(
T
)
≡
i
r
2
(
T
)
. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-015-0284-0 |