On Supercyclicity of Tuples of Operators

In this paper, we use a result of N. S. Feldman to show that there are no supercyclic subnormal tuples in infinite dimensions. Also, we investigate some spectral properties of hypercyclic tuples of operators. Besides, we prove that if T is a supercyclic ℓ -tuple of commuting n × n complex matrices,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2015-10, Vol.38 (4), p.1507-1516
Hauptverfasser: Soltani, R., Hedayatian, K., Khani Robati, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we use a result of N. S. Feldman to show that there are no supercyclic subnormal tuples in infinite dimensions. Also, we investigate some spectral properties of hypercyclic tuples of operators. Besides, we prove that if T is a supercyclic ℓ -tuple of commuting n × n complex matrices, then ℓ ≥ n and also there exists a supercyclic n -tuple of commuting diagonal n × n matrices. Furthermore, we see that if T = ( T 1 , … , T n ) is a supercyclic n -tuple of commuting n × n complex matrices, then T j ’s are simultaneously diagonalizable.
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-014-0083-z