On Supercyclicity of Tuples of Operators
In this paper, we use a result of N. S. Feldman to show that there are no supercyclic subnormal tuples in infinite dimensions. Also, we investigate some spectral properties of hypercyclic tuples of operators. Besides, we prove that if T is a supercyclic ℓ -tuple of commuting n × n complex matrices,...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2015-10, Vol.38 (4), p.1507-1516 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we use a result of N. S. Feldman to show that there are no supercyclic subnormal tuples in infinite dimensions. Also, we investigate some spectral properties of hypercyclic tuples of operators. Besides, we prove that if
T
is a supercyclic
ℓ
-tuple of commuting
n
×
n
complex matrices, then
ℓ
≥
n
and also there exists a supercyclic
n
-tuple of commuting diagonal
n
×
n
matrices. Furthermore, we see that if
T
=
(
T
1
,
…
,
T
n
)
is a supercyclic
n
-tuple of commuting
n
×
n
complex matrices, then
T
j
’s are simultaneously diagonalizable. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-014-0083-z |