Uniqueness of Kerr–Newman–de Sitter Black Holes with Small Angular Momenta
We show that a stationary solution of the Einstein–Maxwell equations which is close to a non-degenerate Reissner–Nordström–de Sitter solution is in fact equal to a slowly rotating Kerr–Newman–de Sitter solution. The proof uses the nonlinear stability of the Kerr–Newman–de Sitter family of black hole...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2018-02, Vol.19 (2), p.607-617 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that a stationary solution of the Einstein–Maxwell equations which is close to a non-degenerate Reissner–Nordström–de Sitter solution is in fact equal to a slowly rotating Kerr–Newman–de Sitter solution. The proof uses the nonlinear stability of the Kerr–Newman–de Sitter family of black holes with small angular momenta, recently established by the author, together with an extension argument for Killing vector fields. Our black hole uniqueness result only requires the solution to have high but finite regularity; in particular, we do not make any analyticity assumptions. |
---|---|
ISSN: | 1424-0637 1424-0661 |
DOI: | 10.1007/s00023-017-0633-7 |