Uniqueness of Kerr–Newman–de Sitter Black Holes with Small Angular Momenta

We show that a stationary solution of the Einstein–Maxwell equations which is close to a non-degenerate Reissner–Nordström–de Sitter solution is in fact equal to a slowly rotating Kerr–Newman–de Sitter solution. The proof uses the nonlinear stability of the Kerr–Newman–de Sitter family of black hole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2018-02, Vol.19 (2), p.607-617
1. Verfasser: Hintz, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that a stationary solution of the Einstein–Maxwell equations which is close to a non-degenerate Reissner–Nordström–de Sitter solution is in fact equal to a slowly rotating Kerr–Newman–de Sitter solution. The proof uses the nonlinear stability of the Kerr–Newman–de Sitter family of black holes with small angular momenta, recently established by the author, together with an extension argument for Killing vector fields. Our black hole uniqueness result only requires the solution to have high but finite regularity; in particular, we do not make any analyticity assumptions.
ISSN:1424-0637
1424-0661
DOI:10.1007/s00023-017-0633-7