Off-Policy Q-Learning: Set-Point Design for Optimizing Dual-Rate Rougher Flotation Operational Processes
Rougher flotation, composed of unit processes operating at a fast time scale and economic performance measurements known as operational indices measured at a slower time scale, is very basic and the first concentration stage for flotation plants. Optimizing operational process for rougher flotation...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2018-05, Vol.65 (5), p.4092-4102 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rougher flotation, composed of unit processes operating at a fast time scale and economic performance measurements known as operational indices measured at a slower time scale, is very basic and the first concentration stage for flotation plants. Optimizing operational process for rougher flotation circuits is extremely important due to high economic profit arising from the optimality of operational indices. This paper presents a novel off-policy Q-learning method to learn the optimal solution to rougher flotation operational processes without the knowledge of dynamics of unit processes and operational indices. To this end, first, the optimal operational control for dual-rate rougher flotation processes is formulated. Second, H∞ tracking control problem is developed to optimally prescribe the set-points for the rougher flotation processes. Then, a zero-sum game off-policy Q-learning algorithm is proposed to find the optimal set-points by using measured data. Finally, simulation experiments are employed to show the effectiveness of the proposed method. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2017.2760245 |