The Information-Cost-Reward framework for understanding robot swarm foraging
Demand for autonomous swarms, where robots can cooperate with each other without human intervention, is set to grow rapidly in the near future. Currently, one of the main challenges in swarm robotics is understanding how the behaviour of individual robots leads to an observed emergent collective per...
Gespeichert in:
Veröffentlicht in: | Swarm intelligence 2018-03, Vol.12 (1), p.71-96 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Demand for autonomous swarms, where robots can cooperate with each other without human intervention, is set to grow rapidly in the near future. Currently, one of the main challenges in swarm robotics is understanding how the behaviour of individual robots leads to an observed emergent collective performance. In this paper, a novel approach to understanding robot swarms that perform foraging is proposed in the form of the Information-Cost-Reward (ICR) framework. The framework relates the way in which robots obtain and share information (about where work needs to be done) to the swarm’s ability to exploit that information in order to obtain reward efficiently in the context of a particular task and environment. The ICR framework can be applied to analyse underlying mechanisms that lead to observed swarm performance, as well as to inform hypotheses about the suitability of a particular robot control strategy for new swarm missions. Additionally, the information-centred understanding that the framework offers paves a way towards a new swarm design methodology where general principles of collective robot behaviour guide algorithm design. |
---|---|
ISSN: | 1935-3812 1935-3820 |
DOI: | 10.1007/s11721-017-0148-3 |