The sharp affine L 2 Sobolev trace inequality and variants
We establish a sharp affineLp Sobolev trace inequality by using the Lp Busemann–Petty centroid inequality. For p=2, our affine version is stronger than the famous sharp L2 Sobolev trace inequality proved independently by Escobar and Beckner. Our approach allows also to characterize all extremizers i...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2018-01, Vol.370 (1), p.287-308 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish a sharp affineLp Sobolev trace inequality by using the Lp Busemann–Petty centroid inequality. For p=2, our affine version is stronger than the famous sharp L2 Sobolev trace inequality proved independently by Escobar and Beckner. Our approach allows also to characterize all extremizers in this case. For this new inequality, no Euclidean geometric structure is needed. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-017-1548-9 |