The sharp affine L 2 Sobolev trace inequality and variants

We establish a sharp affineLp Sobolev trace inequality by using the Lp Busemann–Petty centroid inequality. For p=2, our affine version is stronger than the famous sharp L2 Sobolev trace inequality proved independently by Escobar and Beckner. Our approach allows also to characterize all extremizers i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2018-01, Vol.370 (1), p.287-308
Hauptverfasser: De Nápoli, P L, Haddad, J, Jiménez, C H, Montenegro, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish a sharp affineLp Sobolev trace inequality by using the Lp Busemann–Petty centroid inequality. For p=2, our affine version is stronger than the famous sharp L2 Sobolev trace inequality proved independently by Escobar and Beckner. Our approach allows also to characterize all extremizers in this case. For this new inequality, no Euclidean geometric structure is needed.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-017-1548-9