CONVERGENCE OF THE CENTERED MAXIMUM OF LOG-CORRELATED GAUSSIAN FIELDS

We show that the centered maximum of a sequence of logarithmically correlated Gaussian fields in any dimension converges in distribution, under the assumption that the covariances of the fields converge in a suitable sense. We identify the limit as a randomly shifted Gumbel distribution, and charact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2017-11, Vol.45 (6A), p.3886-3928
Hauptverfasser: Ding, Jian, Roy, Rishideep, Zeitouni, Ofer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3928
container_issue 6A
container_start_page 3886
container_title The Annals of probability
container_volume 45
creator Ding, Jian
Roy, Rishideep
Zeitouni, Ofer
description We show that the centered maximum of a sequence of logarithmically correlated Gaussian fields in any dimension converges in distribution, under the assumption that the covariances of the fields converge in a suitable sense. We identify the limit as a randomly shifted Gumbel distribution, and characterize the random shift as the limit in distribution of a sequence of random variables, reminiscent of the derivative martingale in the theory of branching random walk and Gaussian chaos. We also discuss applications of the main convergence theorem and discuss examples that show that for logarithmically correlated fields; some additional structural assumptions of the type we make are needed for convergence of the centered maximum.
doi_str_mv 10.1214/16-AOP1152
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1987704452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26362547</jstor_id><sourcerecordid>26362547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-510638cc21c636d4516bbdf8b8f40adec209306c5514dbc67b4d7615840886cd3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFYv3oWAN2F1Z7NfOYZ02wbSRNJUeluaTQIWNXW3PfS_N6XF08Cb35t5PIQegbwCBfYGAsfFOwCnV2hEQSisIra-RiNCIsAgI3WL7rzfEkKElGyEdFLkH7qc6TzRQTENqrkOEp1XutSTYBGv08VqcdKzYoaToix1FlfDZhavlss0zoNpqrPJ8h7ddJsv3z5c5hitprpK5niwpUmcYRtytccciAiVtRSsCEXDOIi6bjpVq46RTdNaSqKQCMs5sKa2QtaskQK4YkQpYZtwjJ7Pd3eu_z20fm-2_cH9DC8NREpKwhinA_VypqzrvXdtZ3bu83vjjgaIOdVkQJhLTQP8dIa3ft-7f5IOASlnMvwDsO1bhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987704452</pqid></control><display><type>article</type><title>CONVERGENCE OF THE CENTERED MAXIMUM OF LOG-CORRELATED GAUSSIAN FIELDS</title><source>JSTOR Mathematics and Statistics</source><source>Project Euclid</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Ding, Jian ; Roy, Rishideep ; Zeitouni, Ofer</creator><creatorcontrib>Ding, Jian ; Roy, Rishideep ; Zeitouni, Ofer</creatorcontrib><description>We show that the centered maximum of a sequence of logarithmically correlated Gaussian fields in any dimension converges in distribution, under the assumption that the covariances of the fields converge in a suitable sense. We identify the limit as a randomly shifted Gumbel distribution, and characterize the random shift as the limit in distribution of a sequence of random variables, reminiscent of the derivative martingale in the theory of branching random walk and Gaussian chaos. We also discuss applications of the main convergence theorem and discuss examples that show that for logarithmically correlated fields; some additional structural assumptions of the type we make are needed for convergence of the centered maximum.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/16-AOP1152</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Chaos theory ; Convergence ; Correlation ; Correlation analysis ; Martingales ; Normal distribution ; Random variables ; Random walk ; Random walk theory ; Studies</subject><ispartof>The Annals of probability, 2017-11, Vol.45 (6A), p.3886-3928</ispartof><rights>Copyright © 2017 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-510638cc21c636d4516bbdf8b8f40adec209306c5514dbc67b4d7615840886cd3</citedby><cites>FETCH-LOGICAL-c358t-510638cc21c636d4516bbdf8b8f40adec209306c5514dbc67b4d7615840886cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26362547$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26362547$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Ding, Jian</creatorcontrib><creatorcontrib>Roy, Rishideep</creatorcontrib><creatorcontrib>Zeitouni, Ofer</creatorcontrib><title>CONVERGENCE OF THE CENTERED MAXIMUM OF LOG-CORRELATED GAUSSIAN FIELDS</title><title>The Annals of probability</title><description>We show that the centered maximum of a sequence of logarithmically correlated Gaussian fields in any dimension converges in distribution, under the assumption that the covariances of the fields converge in a suitable sense. We identify the limit as a randomly shifted Gumbel distribution, and characterize the random shift as the limit in distribution of a sequence of random variables, reminiscent of the derivative martingale in the theory of branching random walk and Gaussian chaos. We also discuss applications of the main convergence theorem and discuss examples that show that for logarithmically correlated fields; some additional structural assumptions of the type we make are needed for convergence of the centered maximum.</description><subject>Chaos theory</subject><subject>Convergence</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Martingales</subject><subject>Normal distribution</subject><subject>Random variables</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Studies</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AQxRdRsFYv3oWAN2F1Z7NfOYZ02wbSRNJUeluaTQIWNXW3PfS_N6XF08Cb35t5PIQegbwCBfYGAsfFOwCnV2hEQSisIra-RiNCIsAgI3WL7rzfEkKElGyEdFLkH7qc6TzRQTENqrkOEp1XutSTYBGv08VqcdKzYoaToix1FlfDZhavlss0zoNpqrPJ8h7ddJsv3z5c5hitprpK5niwpUmcYRtytccciAiVtRSsCEXDOIi6bjpVq46RTdNaSqKQCMs5sKa2QtaskQK4YkQpYZtwjJ7Pd3eu_z20fm-2_cH9DC8NREpKwhinA_VypqzrvXdtZ3bu83vjjgaIOdVkQJhLTQP8dIa3ft-7f5IOASlnMvwDsO1bhA</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Ding, Jian</creator><creator>Roy, Rishideep</creator><creator>Zeitouni, Ofer</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20171101</creationdate><title>CONVERGENCE OF THE CENTERED MAXIMUM OF LOG-CORRELATED GAUSSIAN FIELDS</title><author>Ding, Jian ; Roy, Rishideep ; Zeitouni, Ofer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-510638cc21c636d4516bbdf8b8f40adec209306c5514dbc67b4d7615840886cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chaos theory</topic><topic>Convergence</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Martingales</topic><topic>Normal distribution</topic><topic>Random variables</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Jian</creatorcontrib><creatorcontrib>Roy, Rishideep</creatorcontrib><creatorcontrib>Zeitouni, Ofer</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Jian</au><au>Roy, Rishideep</au><au>Zeitouni, Ofer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CONVERGENCE OF THE CENTERED MAXIMUM OF LOG-CORRELATED GAUSSIAN FIELDS</atitle><jtitle>The Annals of probability</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>45</volume><issue>6A</issue><spage>3886</spage><epage>3928</epage><pages>3886-3928</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>We show that the centered maximum of a sequence of logarithmically correlated Gaussian fields in any dimension converges in distribution, under the assumption that the covariances of the fields converge in a suitable sense. We identify the limit as a randomly shifted Gumbel distribution, and characterize the random shift as the limit in distribution of a sequence of random variables, reminiscent of the derivative martingale in the theory of branching random walk and Gaussian chaos. We also discuss applications of the main convergence theorem and discuss examples that show that for logarithmically correlated fields; some additional structural assumptions of the type we make are needed for convergence of the centered maximum.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/16-AOP1152</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2017-11, Vol.45 (6A), p.3886-3928
issn 0091-1798
2168-894X
language eng
recordid cdi_proquest_journals_1987704452
source JSTOR Mathematics and Statistics; Project Euclid; JSTOR; EZB Electronic Journals Library
subjects Chaos theory
Convergence
Correlation
Correlation analysis
Martingales
Normal distribution
Random variables
Random walk
Random walk theory
Studies
title CONVERGENCE OF THE CENTERED MAXIMUM OF LOG-CORRELATED GAUSSIAN FIELDS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CONVERGENCE%20OF%20THE%20CENTERED%20MAXIMUM%20OF%20LOG-CORRELATED%20GAUSSIAN%20FIELDS&rft.jtitle=The%20Annals%20of%20probability&rft.au=Ding,%20Jian&rft.date=2017-11-01&rft.volume=45&rft.issue=6A&rft.spage=3886&rft.epage=3928&rft.pages=3886-3928&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/16-AOP1152&rft_dat=%3Cjstor_proqu%3E26362547%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987704452&rft_id=info:pmid/&rft_jstor_id=26362547&rfr_iscdi=true