CONVERGENCE OF THE CENTERED MAXIMUM OF LOG-CORRELATED GAUSSIAN FIELDS

We show that the centered maximum of a sequence of logarithmically correlated Gaussian fields in any dimension converges in distribution, under the assumption that the covariances of the fields converge in a suitable sense. We identify the limit as a randomly shifted Gumbel distribution, and charact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2017-11, Vol.45 (6A), p.3886-3928
Hauptverfasser: Ding, Jian, Roy, Rishideep, Zeitouni, Ofer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the centered maximum of a sequence of logarithmically correlated Gaussian fields in any dimension converges in distribution, under the assumption that the covariances of the fields converge in a suitable sense. We identify the limit as a randomly shifted Gumbel distribution, and characterize the random shift as the limit in distribution of a sequence of random variables, reminiscent of the derivative martingale in the theory of branching random walk and Gaussian chaos. We also discuss applications of the main convergence theorem and discuss examples that show that for logarithmically correlated fields; some additional structural assumptions of the type we make are needed for convergence of the centered maximum.
ISSN:0091-1798
2168-894X
DOI:10.1214/16-AOP1152