Formation mechanism for oxidation synthesis of carbon nanomaterials and detonation process for core-shell structure
A novel formation mechanism according to the oxidative dehydrogenation of organics has been proposed for the low-temperature preparation of carbon-based nanomaterials. Several typical organics including ethanol, 1-butanol, p-cymene and liquid paraffin are used as precursors to react with ammonium pe...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2018-02, Vol.127, p.21-30 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel formation mechanism according to the oxidative dehydrogenation of organics has been proposed for the low-temperature preparation of carbon-based nanomaterials. Several typical organics including ethanol, 1-butanol, p-cymene and liquid paraffin are used as precursors to react with ammonium persulfate (APS) in an autoclave, and carbon particles are obtained as a validation. The reaction characteristics are comprehensively investigated by the differential scanning calorimetric and thermogravimetric analysis. The strongly exothermic oxidation reaction below 200 °C is a common feature during the process. The organic molecules are cleaved into small carbon species and further transform to amorphous carbon. When the organometallic compound is used as a reactant instead, such as magnesocene and allyltriphenyltin, carbon encapsulated MgO and SnS nanocrystals with core-shell structure are synthesized, respectively. A detonation introduced by the violent reaction occurs in the process with a very rapid liberation of heat and large quantities of thermally expanding gases. The large amounts of free atomic/radical species and reactive intermediates are generated as sources for the core-shell structure. It is a common strategy for the large scale production of carbon encapsulated oxide/sulfide nanocrystals by means of the moderate detonation process of the organometallic compound and APS in an autoclave.
[Display omitted] |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2017.10.081 |