Volume Renormalization for the Blaschke Metric on Strictly Convex Domains
We consider the volume expansion of the Blaschke metric, which is a projectively invariant metric on a strictly convex domain in a locally flat projective manifold. When the boundary is even dimensional, we express the logarithmic coefficient L as the integral of affine invariants over the boundary....
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2018, Vol.28 (1), p.510-545 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the volume expansion of the Blaschke metric, which is a projectively invariant metric on a strictly convex domain in a locally flat projective manifold. When the boundary is even dimensional, we express the logarithmic coefficient
L
as the integral of affine invariants over the boundary. We also formulate an intrinsic geometry of the boundary as a conformal Codazzi structure and show that
L
gives a global conformal invariant of the boundary. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-017-9831-2 |