Volume Renormalization for the Blaschke Metric on Strictly Convex Domains

We consider the volume expansion of the Blaschke metric, which is a projectively invariant metric on a strictly convex domain in a locally flat projective manifold. When the boundary is even dimensional, we express the logarithmic coefficient L as the integral of affine invariants over the boundary....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2018, Vol.28 (1), p.510-545
1. Verfasser: Marugame, Taiji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the volume expansion of the Blaschke metric, which is a projectively invariant metric on a strictly convex domain in a locally flat projective manifold. When the boundary is even dimensional, we express the logarithmic coefficient L as the integral of affine invariants over the boundary. We also formulate an intrinsic geometry of the boundary as a conformal Codazzi structure and show that L gives a global conformal invariant of the boundary.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-017-9831-2