GSK-3β inhibitor 6-bromo-indirubin-3′-oxime promotes both adhesive activity and drug resistance in colorectal cancer cells

Multi-targets inhibitor 6-bromo-indirubin-3′-oxime (BIO) has diverse biological effects on cancer cells. The key component of the β-catenin destruction complex glycogen synthase kinase 3β (GSK-3β), one of the major target for BIO, polyubiquitination and degradation of the main oncoprotein β-catenin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of oncology 2017-12, Vol.51 (6), p.1821-1830
Hauptverfasser: Liu, Kunping, Li, Jinbang, Wu, Xuefang, Chen, Meixiang, Luo, Feng, Li, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multi-targets inhibitor 6-bromo-indirubin-3′-oxime (BIO) has diverse biological effects on cancer cells. The key component of the β-catenin destruction complex glycogen synthase kinase 3β (GSK-3β), one of the major target for BIO, polyubiquitination and degradation of the main oncoprotein β-catenin in colorectal cancer (CRC). In the present study, we evaluated the effect of BIO on drug resistance and biological properties of CRC cells. Whole-genome transcriptional profiling revealed that differentially expressed genes were mainly centered on well-characterized signaling pathways including stem cell, cell adhesion and cell growth in BIO-treated CRC cells. BIO treatment downregulated migration and invasion abilities of CRC cells, accompanying with MMP-9 downregulated and E-cadherin upregulated CRC cells. BIO treatment decreased apoptosis induced by 5-Fu/DDP in CRC SW480 cells. In addition, BIO treatment reversed the 5-Fu-induced CD133+ cell downregulation trend in CRC SW620 cells. After incubation with BIO, the expression levels of EpCAM, TERT and DCAMKL-1 proteins were upregulated in CRC cells. BIO treatment downregulated the activity of GSK-3β, upregulated and transported β-catenin to the nucleus in CRC cells. Our findings reveal that BIO treatment upregulated stemness, adhesive and chemoresistance of CRC cells. GSK-3β inhibition and WNT/β-catenin activation by BIO, may partly result in the biological behavior alterations in CRC cells.
ISSN:1019-6439
1791-2423
DOI:10.3892/ijo.2017.4163