6-D Electromagnetic Tracking Approach Using Uniaxial Transmitting Coil and Tri-Axial Magneto-Resistive Sensor
The real-time electromagnetic tracking method has been widely applied, despite its limitations such as a high computational cost and complex hardware components. In this paper, a simple and efficient electromagnetic tracking approach, with both 3-D and 6-D pose tracking, is proposed. This approach u...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2018-02, Vol.18 (3), p.1178-1186 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The real-time electromagnetic tracking method has been widely applied, despite its limitations such as a high computational cost and complex hardware components. In this paper, a simple and efficient electromagnetic tracking approach, with both 3-D and 6-D pose tracking, is proposed. This approach utilizes the geomagnetic field and the magnetic field generated by the 2.5-kHz sinusoidal signal from a uniaxial transmitting coil. By extracting both the alternating current (AC) and direct current (DC) components from the outputs of a miniature tri-axial magneto-resistive sensor, the position and orientation parameters of the sensor can be computed by using the combination of the geomagnetic orientation algorithm and the magnetic dipole model-based localization algorithm. Since the implementation of the tracking algorithm is based on a sextic equation, this proposed approach is simple and fast. Experimental results show that the root-mean-square value of the position error is 2.6±0.79 mm and the orientation error is 1.4±0.61°. This tracking approach has simple structures of both software and hardware but promising performance and applicability. |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2017.2779560 |