High-Level Programming Abstractions for Distributed Graph Processing

Efficient processing of large-scale graphs in distributed environments has been an increasingly popular topic of research in recent years. Inter-connected data that can be modeled as graphs appear in application domains such as machine learning, recommendation, web search, and social network analysi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2018-02, Vol.30 (2), p.305-324
Hauptverfasser: Kalavri, Vasiliki, Vlassov, Vladimir, Haridi, Seif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efficient processing of large-scale graphs in distributed environments has been an increasingly popular topic of research in recent years. Inter-connected data that can be modeled as graphs appear in application domains such as machine learning, recommendation, web search, and social network analysis. Writing distributed graph applications is inherently hard and requires programming models that can cover a diverse set of problems, including iterative refinement algorithms, graph transformations, graph aggregations, pattern matching, ego-network analysis, and graph traversals. Several high-level programming abstractions have been proposed and adopted by distributed graph processing systems and big data platforms. Even though significant work has been done to experimentally compare distributed graph processing frameworks, no qualitative study and comparison of graph programming abstractions has been conducted yet. In this survey, we review and analyze the most prevalent high-level programming models for distributed graph processing, in terms of their semantics and applicability. We review 34 distributed graph processing systems with respect to the graph processing models they implement and we survey applications that appear in recent distributed graph systems papers. Finally, we discuss trends and open research questions in the area of distributed graph processing.
ISSN:1041-4347
1558-2191
1558-2191
DOI:10.1109/TKDE.2017.2762294