Exposure to ractopamine hydrochloride induces changes in heart rate and behavior in zebrafish embryos and larvae

Different veterinary drugs have been widely found in surface and groundwater, affecting non-target organisms. Ractopamine (RAC) is one of these drugs found in water bodies. It is a β-adrenergic agonist used as a feed additive to modulate the metabolism, redirect nutrients from the adipose tissue tow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2020-06, Vol.27 (17), p.21468-21475
Hauptverfasser: Garbinato, Cristiane, Schneider, Sabrina Ester, Sachett, Adrieli, Decui, Laura, Conterato, Greicy M., Müller, Liz Girardi, Siebel, Anna Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Different veterinary drugs have been widely found in surface and groundwater, affecting non-target organisms. Ractopamine (RAC) is one of these drugs found in water bodies. It is a β-adrenergic agonist used as a feed additive to modulate the metabolism, redirect nutrients from the adipose tissue towards muscles, and increase protein synthesis in swine, cattle, and turkeys. RAC shows toxicological potential, but there is no data about its impacts on the development of non-target organisms, such as zebrafish ( Danio rerio ). In this study, we evaluated the effect of the exposure to this feed additive on critical parameters (hatching, survival, spontaneous movement, heart rate, and exploratory and locomotor behavior) in zebrafish embryos and larvae. The animals were exposed to RAC hydrochloride at 0.1, 0.2, 0.85, 8.5, and 85 μg/L. Zebrafish exposed to the drug showed increased heart rate at all tested concentrations and alterations on locomotion and exploratory behavior at 85 μg/L. No changes were observed in the survival, hatching rate and spontaneous movement. Our results suggest that RAC present in the environment can induce disabling effects on non-target organisms and elicit an ecological imbalance by increasing the animals’ vulnerability to predation due to greater visibility.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-020-08634-2