Functions with Continuous Upper and Lower Envelopes

Given a real-valued upper semicontinuous function h and a real-valued lower semicontinuous function g on a metric space such that (1) h ≥ g pointwise and (2) h ( x ) = g ( x ) at each isolated point of the space, it is not in general possible to find a real-valued function f whose upper envelope is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vietnam journal of mathematics 2018-03, Vol.46 (1), p.169-175
1. Verfasser: Beer, Gerald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a real-valued upper semicontinuous function h and a real-valued lower semicontinuous function g on a metric space such that (1) h ≥ g pointwise and (2) h ( x ) = g ( x ) at each isolated point of the space, it is not in general possible to find a real-valued function f whose upper envelope is h and whose lower envelope is g , even if the space is compact and dense-in-itself. The purpose of this note is to show that such an f exists in the case that both h and g are continuous, and that f can be chosen to be a Borel function.
ISSN:2305-221X
2305-2228
DOI:10.1007/s10013-017-0266-7