A finite classification of (x, y)-primary ideals of low multiplicity

Let S be a polynomial ring over an algebraically closed field k . Let x and y denote linearly independent linear forms in S so that p = ( x , y ) is a height two prime ideal. This paper concerns the structure of p -primary ideals in S . Huneke, Seceleanu, and the authors showed that for e ≥ 3 , ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Collectanea mathematica (Barcelona) 2018, Vol.69 (1), p.107-130
Hauptverfasser: Mantero, Paolo, McCullough, Jason
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let S be a polynomial ring over an algebraically closed field k . Let x and y denote linearly independent linear forms in S so that p = ( x , y ) is a height two prime ideal. This paper concerns the structure of p -primary ideals in S . Huneke, Seceleanu, and the authors showed that for e ≥ 3 , there are infinitely many pairwise non-isomorphic p -primary ideals of multiplicity e . However, we show that for e ≤ 4 there is a finite characterization of the linear, quadric and cubic generators of all such p -primary ideals. We apply our results to improve bounds on the projective dimension of ideals generated by three cubic forms.
ISSN:0010-0757
2038-4815
DOI:10.1007/s13348-017-0196-4