On a Novel Grid Computing-Based Distributed Brute-force Attack Scheme (GCDBF) By Exploiting Botnets

Brute-force attacks are known to be the promising way to break into even most complicated systems by trying every possible permutation of the keys. But since cryptosystems began to use longer and more complex keys, brute-force attacks has lost their usability, because of relatively high complexity o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer network and information security 2017-06, Vol.9 (6), p.21-29
Hauptverfasser: Hasani Ahangar, Mohammad Reza, Esmaeili Taba, Mohammad Reza, Ghafouri, Arash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Brute-force attacks are known to be the promising way to break into even most complicated systems by trying every possible permutation of the keys. But since cryptosystems began to use longer and more complex keys, brute-force attacks has lost their usability, because of relatively high complexity of trying every possible permutation with respect to computational power and computation time that was available to crypto breakers. Although computational power is increasing continuously, its increasing rate is less than that of key length and complexity. Having these assumptions in mind, it is infeasible for centralized traditional computing architectures with limited computation power to break into modern cryptosystem by compromising the key with implementing schemes like conventional brute-force. In this paper authors aim for devising a novel brute-force scheme which integrates a modern computing architecture (grid computing) with botnets in order to perform brute-force attacks with lower computation time and lower equipment cost for individual cryptobreakers who have no access to supercomputers. In summary, GCDBF uses a portion of computation power of each of the infected nodes belonging to a botnet in a grid-based environment in order to process a portion of total workload of a brute-force attack which is needed for breaking a specific key. This approach neutralizes the need of acquiring supercomputers for individual hackers while reducing the required time for breaking the key because of using grid computing architecture. For the purpose of evaluation, GCDBF is implemented in different scenarios to prove its performance in comparison to centralized brute-force scheme.
ISSN:2074-9090
2074-9104
DOI:10.5815/ijcnis.2017.06.03