Video Shots‘ Matching via Various Length of Multidimensional Time Sequences
Temporal clustering (segmentation) for video streams has revolutionized the world of multimedia. Detected shots are principle units of consecutive sets of images for semantic structuring. Evaluation of time series similarity is based on Dynamic Time Warping and provides various solutions for Content...
Gespeichert in:
Veröffentlicht in: | International journal of intelligent systems and applications 2017-11, Vol.9 (11), p.10-16 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Temporal clustering (segmentation) for video streams has revolutionized the world of multimedia. Detected shots are principle units of consecutive sets of images for semantic structuring. Evaluation of time series similarity is based on Dynamic Time Warping and provides various solutions for Content Based Video Information Retrieval. Time series clustering in terms of the iterative Dynamic Time Warping and time series reduction are discussed in the paper. |
---|---|
ISSN: | 2074-904X 2074-9058 |
DOI: | 10.5815/ijisa.2017.11.02 |