Chaotic dynamic weight particle swarm optimization for numerical function optimization
Particle swarm optimization (PSO), which is inspired by social behaviors of individuals in bird swarms, is a nature-inspired and global optimization algorithm. The PSO method is easy to implement and has shown good performance for many real-world optimization tasks. However, PSO has problems with pr...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2018-01, Vol.139, p.23-40 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Particle swarm optimization (PSO), which is inspired by social behaviors of individuals in bird swarms, is a nature-inspired and global optimization algorithm. The PSO method is easy to implement and has shown good performance for many real-world optimization tasks. However, PSO has problems with premature convergence and easy trapping into local optimum solutions. In order to overcome these deficiencies, a chaotic dynamic weight particle swarm optimization (CDW-PSO) is proposed. In the CDW-PSO algorithm, a chaotic map and dynamic weight are introduced to modify the search process. The dynamic weight is defined as a function of the fitness. The search accuracy and performance of the CDW-PSO algorithm are verified on seventeen well-known classical benchmark functions. The experimental results show that, for almost all functions, the CDW-PSO technique has superior performance compared with other nature-inspired optimizations and well-known PSO variants. Namely, the proposed algorithm of CDW-PSO has better search performance. |
---|---|
ISSN: | 0950-7051 1872-7409 |
DOI: | 10.1016/j.knosys.2017.10.011 |