Modelling and analysis of time dependent processes in a chemically reactive mixture

In this paper, we study the propagation of sound waves and the dynamics of local wave disturbances induced by spontaneous internal fluctuations in a reactive mixture. We consider a non-diffusive, non-heat conducting and non-viscous mixture described by an Eulerian set of evolution equations. The mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Continuum mechanics and thermodynamics 2018-01, Vol.30 (1), p.127-144
Hauptverfasser: Ramos, M. P. Machado, Ribeiro, Carolina, Soares, A. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the propagation of sound waves and the dynamics of local wave disturbances induced by spontaneous internal fluctuations in a reactive mixture. We consider a non-diffusive, non-heat conducting and non-viscous mixture described by an Eulerian set of evolution equations. The model is derived from the kinetic theory in a hydrodynamic regime of a fast chemical reaction. The reactive source terms are explicitly computed from the kinetic theory and are built in themodel in a proper way. For both time-dependent problems, we first derive the appropriate dispersion relation, which retains the main effects of the chemical process, and then investigate the influence of the chemical reaction on the properties of interest in the problems studied here. We complete our study by developing a rather detailed analysis using the Hydrogen–Chlorine system as reference. Several numerical computations are included illustrating the behavior of the phase velocity and attenuation coefficient in a low-frequency regime and describing the spectrum of the eigenmodes in the small wavenumber limit. The paper is partially supported by the Research Centre of Mathematics of the University of Minho, with the Portuguese Funds from the Foundation for Science and Technology (FCT) through the Project UID/MAT/00013/2013. We wish to thank the anonymous Referees for their valuable comments and suggestions that helped us to improve the paper.
ISSN:0935-1175
1432-0959
DOI:10.1007/s00161-017-0591-9