Radio astronomy interferometer network testing for a Malaysia–China real-time e-VLBI
The uv-coverage of the current VLBI network between Australia northern Asia will be significantly enhanced with an existence of a middle baseline VLBI station located in Malaysia. This paper investigated the connecting route of the first half of the Asia-Oceania VLBI network i.e. from Malaysia to Ch...
Gespeichert in:
Veröffentlicht in: | Indian journal of physics 2018, Vol.92 (1), p.1-6 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The uv-coverage of the current VLBI network between Australia northern Asia will be significantly enhanced with an existence of a middle baseline VLBI station located in Malaysia. This paper investigated the connecting route of the first half of the Asia-Oceania VLBI network i.e. from Malaysia to China. The investigation of transmission network characteristics between Malaysia and China was carried out in order to perform a real-time and reliable data transfer within the e-VLBI network for future eVLBI observations. MyREN (Malaysia) and CSTNET (China) high-speed research networks were utilized for this proposed e-VLBI connection. Preliminary network test was performed by
ping
,
traceroute
, and
iperf
prior to data transfer tests, which were evaluated with three types of protocols namely FTP, Tsunami-UDT and UDT. The results showed that, on average, there were eighteen hops between Malaysia and China networks with 98 ms round trip time (RTT) delay. Overall UDP protocol has a better throughput compared to TCP protocol. UDP can reach a maximum rate of 90 Mbps with 0% packet loss. In this feasibility test, the VLBI test data was successfully transferred between Malaysia and China by utilizing the three types of data transfer protocols. |
---|---|
ISSN: | 0973-1458 0974-9845 |
DOI: | 10.1007/s12648-017-1080-5 |