On Interval Based Generalizations of Absolute Continuity for Functions on R^sub n

We study notions of absolute continuity for functions defined on Rn similar to the notion of a-absolute continuity in the sense of Bongiorno. We confirm a conjecture of Maly that 1-absolutely continuous functions do not need to be differentiable a.e., and we show several other pathological examples...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Real analysis exchange 2017-04, Vol.42 (1), p.49
Hauptverfasser: Dymond, Michael, Randrianantoanina, Beata, Xu, Huaqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study notions of absolute continuity for functions defined on Rn similar to the notion of a-absolute continuity in the sense of Bongiorno. We confirm a conjecture of Maly that 1-absolutely continuous functions do not need to be differentiable a.e., and we show several other pathological examples of functions in this class. We establish some containment relations of the class 1-ACWDN which consits of all functions in 1-AC which are in the Sobolev space W1,2 loc, are differentiable a.e. and satisfy the Luzin (N) property, with previously studied classes of absolutely continuous functions.
ISSN:0147-1937
1930-1219