Thermal engineering of lead-free nanostructured CH3NH3SnCl3 perovskite material for thin-film solar cell

Perovskite solar cell is a kind of revolutionary investigation in the field of renewable energy which is capable of mitigates the deficiencies of silicon solar cell and its uprising efficiency can bring blessing to society. The presence of lead (Pb) in perovskite solar cell can make worst and negati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2018, Vol.20 (1), p.1-13, Article 5
Hauptverfasser: Moyez, Sk Abdul, Roy, Subhasis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Perovskite solar cell is a kind of revolutionary investigation in the field of renewable energy which is capable of mitigates the deficiencies of silicon solar cell and its uprising efficiency can bring blessing to society. The presence of lead (Pb) in perovskite solar cell can make worst and negative impact on environment and is not desirable for our society. In this paper, general plans are anticipated by replacement of Pb with tin (Sn) in open atmosphere to fabricate the CH 3 NH 3 SnCl 3 photovoltaic cells in chlorine (Cl)-rich environment. Excess uses of Cl has positive influences on morphological growth of the film and it also suppresses the oxidation tendency of tin (Sn) with existing oxygen in atmosphere and maintains same chemical atmosphere as bulk. Various characterization tools like X-ray diffraction, scanning electron microscope (SEM) have been used to study the effect of annealing temperature on crystal stricture, phase formation, impurities, and morphologies of the film. Finally, photovoltaic performance was reported using the solar simulator under 1.5 sun illumination. Graphical abstract ᅟ
ISSN:1388-0764
1572-896X
DOI:10.1007/s11051-017-4108-z