Topological Robustness and Vulnerability Assessment of Water Distribution Networks

The reliability of a water distribution network (WDN) is a function of several time-invariant and time-dependent factors affecting its components and connectivity, most important of which have been shown to be the network’s topology, its operating pressure, the type of key components (such as the di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources management 2017-09, Vol.31 (12), p.4007-4021
Hauptverfasser: Agathokleous, Agathoklis, Christodoulou, Chrystalleni, Christodoulou, Symeon E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reliability of a water distribution network (WDN) is a function of several time-invariant and time-dependent factors affecting its components and connectivity, most important of which have been shown to be the network’s topology, its operating pressure, the type of key components (such as the diameter, length, material and age of water pipes) and the network’s historical performance (such as the number of previously observed failures in the network). In terms of network topology, this attribute even though generally thought as time-invariant it actually is time-dependent, as the paths in a water distribution network change over time based on the hydraulics in the network (water demand and water pressure/flow alter the way water flows in the piping network). The work described herein examines the time-dependent nature of a WDN topology and by means of a betweenness centrality index (BC) method demonstrates the effect of topology on the network’s vulnerability / reliability. The importance of the betweenness centrality index is demonstrated by use of a case-study water distribution network operated under both normal and abnormal conditions. The proposed method is also coupled with spatial mapping to indicate areas of concern in the network, and with a decision support system to assist in prioritizing actions to improve on the network’s robustness and resilience.
ISSN:0920-4741
1573-1650
DOI:10.1007/s11269-017-1721-7