Stochastic support vector regression with probabilistic constraints

Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, we introduce a novel model of SVR in which any training samples containing inputs and outputs are considered the random variables with known or unknown distribution functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2018, Vol.48 (1), p.243-256
Hauptverfasser: Abaszade, Maryam, Effati, Sohrab
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, we introduce a novel model of SVR in which any training samples containing inputs and outputs are considered the random variables with known or unknown distribution functions. Constraints occurrence have a probability density function which helps to obtain maximum margin and achieve robustness. The optimal hyperplane regression can be obtained by solving a quadratic optimization problem. The proposed method is illustrated by several experiments including artificial data sets and real-world benchmark data sets.
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-017-0964-6