Mechanisms of experience-dependent plasticity in the auditory localization pathway of the barn owl

Sound localization is a computational process that requires the central nervous system to measure various auditory cues and then associate particular cue values with appropriate locations in space. Behavioral experiments show that barn owls learn to associate values of cues with locations in space b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Comparative Physiology 1999-10, Vol.185 (4), p.305-321
1. Verfasser: Knudsen, E I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sound localization is a computational process that requires the central nervous system to measure various auditory cues and then associate particular cue values with appropriate locations in space. Behavioral experiments show that barn owls learn to associate values of cues with locations in space based on experience. The capacity for experience-driven changes in sound localization behavior is particularly great during a sensitive period that lasts until the approach of adulthood. Neurophysiological techniques have been used to determine underlying sites of plasticity in the auditory space-processing pathway. The external nucleus of the inferior colliculus (ICX), where a map of auditory space is synthesized, is a major site of plasticity. Experience during the sensitive period can cause large-scale, adaptive changes in the tuning of ICX neurons for sound localization cues. Large-scale physiological changes are accompanied by anatomical remodeling of afferent axons to the ICX. Changes in the tuning of ICX neurons for cue values involve two stages: (1) the instructed acquisition of neuronal responses to novel cue values and (2) the elimination of responses to inappropriate cue values. Newly acquired neuronal responses depend differentially on NMDA receptor currents for their expression. A model is presented that can account for this adaptive plasticity in terms of plausible cellular mechanisms.
ISSN:0340-7594
1432-1351
DOI:10.1007/s003590050391