Differential channeling of sensory stimuli onto a motor neuron in the leech

We studied a specific sensory-motor pathway in the isolated leech ganglia. Pressure-sensitive mechanosensory neurons were stimulated with trains of action potentials at 5-20 Hz while recording the responses of the annulus erector motorneurons that control annuli erection. The response of the annulus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Comparative Physiology 1999-02, Vol.184 (2), p.233-241
Hauptverfasser: Iscla, I, Arini, P D, Szczupak, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We studied a specific sensory-motor pathway in the isolated leech ganglia. Pressure-sensitive mechanosensory neurons were stimulated with trains of action potentials at 5-20 Hz while recording the responses of the annulus erector motorneurons that control annuli erection. The response of the annulus erector neurons was a succession of excitatory postsynaptic potentials followed by inhibitory postsynaptic potentials. The excitatory postsynaptic potentials had a brief time-course while the inhibitory postsynaptic potentials had a prolonged time-course that enabled their temporal summation. Thus, the net effect of pressure-sensitive neuron stimulation on the annulus erector neurons was inhibitory. Both phases of the response were mediated by chemical transmission; the excitatory postsynaptic potentials were transmitted via a monosynaptic pathway, and the inhibitory postsynaptic potentials via a polysynaptic one. The pattern of expression of this dual response depended on the field of innervation of the sensory neuron and it was under the influence of cell 151, a non-spiking interneuron, that could regulate the expression of the hyperpolarization. The interaction between pressure-sensitive neurons and annulus erector neuron reveals how sensory specificity, connectivity pattern and regulatory elements interplay in a specific sensory-motor network.
ISSN:0340-7594
1432-1351
DOI:10.1007/s003590050321