Pullback Dynamics of Non-autonomous Timoshenko Systems
This paper is concerned with the Timoshenko system, a recognized model for vibrations of thin prismatic beams. The corresponding autonomous system has been widely studied. However, there are only a few works dedicated to its non-autonomous counterpart. Here, we investigate the long-time dynamics of...
Gespeichert in:
Veröffentlicht in: | Applied mathematics & optimization 2019-10, Vol.80 (2), p.391-413 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the Timoshenko system, a recognized model for vibrations of thin prismatic beams. The corresponding autonomous system has been widely studied. However, there are only a few works dedicated to its non-autonomous counterpart. Here, we investigate the long-time dynamics of Timoshenko systems involving a nonlinear foundation and subjected to perturbations of time-dependent external forces. The main result establishes the existence of a pullback exponential attractor, which as a consequence, implies the existence of a minimal pullback attractor with finite fractal dimension. The upper-semicontinuity of attractors, as the non-autonomous forces tend to zero, is also studied. |
---|---|
ISSN: | 0095-4616 1432-0606 |
DOI: | 10.1007/s00245-017-9469-2 |