A survey on deep learning in medical image analysis

•A summary of all deep learning algorithms used in medical image analysis is given.•The most successful algorithms for key image analysis tasks are identified.•300 papers applying deep learning to different applications have been summarized. [Display omitted] Deep learning algorithms, in particular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2017-12, Vol.42, p.60-88
Hauptverfasser: Litjens, Geert, Kooi, Thijs, Bejnordi, Babak Ehteshami, Setio, Arnaud Arindra Adiyoso, Ciompi, Francesco, Ghafoorian, Mohsen, van der Laak, Jeroen A.W.M., van Ginneken, Bram, Sánchez, Clara I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•A summary of all deep learning algorithms used in medical image analysis is given.•The most successful algorithms for key image analysis tasks are identified.•300 papers applying deep learning to different applications have been summarized. [Display omitted] Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research.
ISSN:1361-8415
1361-8423
DOI:10.1016/j.media.2017.07.005