Predicting Banking Crises with Artificial Neural Networks: The Role of Nonlinearity and Heterogeneity

Studies of the early warning systems (EWSs) for banking crises usually rely on linear classifiers, estimated with international datasets. I construct an EWS based on an artificial neural network (ANN) model, and I also account for regional heterogeneity in order to improve the generalization ability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Scandinavian journal of economics 2018-01, Vol.120 (1), p.31-62
1. Verfasser: Ristolainen, Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies of the early warning systems (EWSs) for banking crises usually rely on linear classifiers, estimated with international datasets. I construct an EWS based on an artificial neural network (ANN) model, and I also account for regional heterogeneity in order to improve the generalization ability of EWS models. All of the banking crises in my test set are then predictable at a 24-month horizon, using information from earlier crises. For some countries, estimation with a regional dataset significantly improves the predictions. The ANN outperforms the usual logit regression, assessed by the area under the receiver operating characteristics curve.
ISSN:0347-0520
1467-9442
DOI:10.1111/sjoe.12216