Deep spatiotemporal models for robust proprioceptive terrain classification

Terrain classification is a critical component of any autonomous mobile robot system operating in unknown real-world environments. Over the years, several proprioceptive terrain classification techniques have been introduced to increase robustness or act as a fallback for traditional vision based ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 2017-12, Vol.36 (13-14), p.1521-1539
Hauptverfasser: Valada, Abhinav, Burgard, Wolfram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Terrain classification is a critical component of any autonomous mobile robot system operating in unknown real-world environments. Over the years, several proprioceptive terrain classification techniques have been introduced to increase robustness or act as a fallback for traditional vision based approaches. However, they lack widespread adaptation due to various factors that include inadequate accuracy, robustness and slow run-times. In this paper, we use vehicle-terrain interaction sounds as a proprioceptive modality and propose a deep long-short term memory based recurrent model that captures both the spatial and temporal dynamics of such a problem, thereby overcoming these past limitations. Our model consists of a new convolution neural network architecture that learns deep spatial features, complemented with long-short term memory units that learn complex temporal dynamics. Experiments on two extensive datasets collected with different microphones on various indoor and outdoor terrains demonstrate state-of-the-art performance compared to existing techniques. We additionally evaluate the performance in adverse acoustic conditions with high-ambient noise and propose a noise-aware training scheme that enables learning of more generalizable models that are essential for robust real-world deployments.
ISSN:0278-3649
1741-3176
DOI:10.1177/0278364917727062