Domain-selective functional analysis of variance for supervised statistical profile monitoring of signal data

In many applications, process monitoring has to deal with functional responses, which are also known as profile data. In these scenarios, a relevant industrial problem consists of detecting faults by combining supervised learning with functional data analysis and statistical process monitoring. Supe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society Series C: Applied Statistics 2018-01, Vol.67 (1), p.55-81
Hauptverfasser: Pini, Alessia, Vantini, Simone, Colosimo, Bianca Maria, Grasso, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In many applications, process monitoring has to deal with functional responses, which are also known as profile data. In these scenarios, a relevant industrial problem consists of detecting faults by combining supervised learning with functional data analysis and statistical process monitoring. Supervised learning is usually applied to the whole signal domain, with the aim of discovering the features that are affected by the faults of interest. We explore a different perspective, which consists of performing supervised learning to select inferentially the parts of the signal data that are more informative in terms of underlying fault factors. The procedure is based on a non-parametric domain-selective functional analysis of variance and allows us to identify the specific subintervals where the profile is sensitive to process changes. Benefits achieved by coupling the proposed approach with profile monitoring are highlighted by using a simulation study. We show how applying profile monitoring only to the identified subintervals can reduce the time to detect the out-of-control state of the process. To illustrate its potential in industrial applications, the procedure is applied to remote laser welding, where the main aim is monitoring the gap between the welded plates through the observation of the emission spectra of the welded material.
ISSN:0035-9254
1467-9876
DOI:10.1111/rssc.12218