A nonlinear eigenvalue optimization problem: Optimal potential functions
In this paper we study the following optimal shape design problem: Given an open connected set Ω⊂RN and a positive number A∈(0,|Ω|), find a measurable subset D⊂Ω with |D|=A such that the minimal eigenvalue of −div(ζ(λ,x)∇u)+αχDu=λu in Ω, u=0 on ∂Ω, is as small as possible. This sort of nonlinear eig...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis: real world applications 2018-04, Vol.40, p.307-327 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the following optimal shape design problem: Given an open connected set Ω⊂RN and a positive number A∈(0,|Ω|), find a measurable subset D⊂Ω with |D|=A such that the minimal eigenvalue of −div(ζ(λ,x)∇u)+αχDu=λu in Ω, u=0 on ∂Ω, is as small as possible. This sort of nonlinear eigenvalue problems arises in the study of some quantum dots taking into account an electron effective mass. We establish the existence of a solution and we determine some qualitative aspects of the optimal configurations. For instance, we can get a nearly optimal set which is an approximation of the minimizer in ultra-high contrast regime. A numerical algorithm is proposed to obtain an approximate description of the optimizer. |
---|---|
ISSN: | 1468-1218 1878-5719 |
DOI: | 10.1016/j.nonrwa.2017.09.003 |