Evidence for Holocene sea level and climate change from Almenara marsh (western Mediterranean)

In the Almenara marsh (western Mediterranean), four cores were analyzed to establish the relationship between the marsh record of the Almenara marshlands and the environmental factors responsible for its evolution during the Holocene. One hundred and eighty-six samples were collected for sedimentolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quaternary research 2017-09, Vol.88 (2), p.206-222
Hauptverfasser: Blázquez, Ana M., Rodríguez-Pérez, Ana, Torres, Trinidad, Ortiz, José E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the Almenara marsh (western Mediterranean), four cores were analyzed to establish the relationship between the marsh record of the Almenara marshlands and the environmental factors responsible for its evolution during the Holocene. One hundred and eighty-six samples were collected for sedimentologic and paleontological study: 63 for biomarker analysis; 5 for amino acid racemization (AAR) dating; and 5 for 14C dating. Litho and biofacies analyses identified distinct paleoenvironments, with the presence of a marsh environment alternating with inputs of alluvial material and marine sediments. Biomarkers indicated the constant presence of terrestrial (herbaceous) plants, together with a variable development of aquatic macrophytes. During the Holocene transgression, the Almenara marsh was occupied by oligohaline marsh facies with an oscillating water level and peat formation, which was established at the bottom of the record at 7570 cal yr BP and persisted until 3100±780 yr (AAR). Maximum surface flooding occurred at 5480 cal yr BP, registered 450m from the current coastline. At least three peat beds (dated with 14C dating and AAR) correlated with Bond (episode 5900 cal yr BP) and Wanner (episodes 4800–4500 and 3300–3500 cal yr BP) cycles and thus correspond to a regional model that affected the Northern Hemisphere.
ISSN:0033-5894
1096-0287
DOI:10.1017/qua.2017.47