STABLE MODELS OF LUBIN–TATE CURVES WITH LEVEL THREE

We construct a stable formal model of a Lubin–Tate curve with level three, and study the action of a Weil group and a division algebra on its stable reduction. Further, we study a structure of cohomology of the Lubin–Tate curve. Our study is purely local and includes the case where the characteristi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 2017-03, Vol.225, p.100-151
Hauptverfasser: IMAI, NAOKI, TSUSHIMA, TAKAHIRO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct a stable formal model of a Lubin–Tate curve with level three, and study the action of a Weil group and a division algebra on its stable reduction. Further, we study a structure of cohomology of the Lubin–Tate curve. Our study is purely local and includes the case where the characteristic of the residue field of a local field is two.
ISSN:0027-7630
2152-6842
DOI:10.1017/nmj.2016.36