Weighted Pseudo-Almost Periodic Solutions for Shunting Inhibitory Cellular Neural Networks on Time Scales
In this paper, by using the exponential dichotomy of linear dynamic equations on time scales, a fixed point theorem and the theory of calculus on time scales, we obtain sufficient conditions for the existence, uniqueness and global exponential stability of weighted pseudo-almost periodic solutions o...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2019-09, Vol.42 (5), p.2055-2074 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, by using the exponential dichotomy of linear dynamic equations on time scales, a fixed point theorem and the theory of calculus on time scales, we obtain sufficient conditions for the existence, uniqueness and global exponential stability of weighted pseudo-almost periodic solutions of a class of shunting inhibitory cellular neural networks with mixed delays on time scales. A numerical example is also presented to illustrate the feasibility of our results. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-017-0595-4 |